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a b s t r a c t

The transition phase of MgTe from rock salt structure (B1) to cesium chloride structure (B2) is inves-
tigated by ab initio plane-wave pseudopotential density functional theory method. The thermodynamic
properties of the B1 and B2 structures are obtained through the quasi-harmonic Debye model. Our results
indicated that MgTe undergoes a structural phase transition from B1 to B2 at about 90.32 GPa. The depen-
dences of the relative volume V/V0 on the pressure P, the Debye temperature � and heat capacity CV on
the pressure P, the Grüneisen parameter ratio (� − �0)/�0 on pressure P, the bulk moduli ratio (B − B0)/B0
2.20.de
4.70.Kb
1.15.Mb

eywords:
gTe

on pressure P, as well as the heat capacity CV on the temperature T are estimated.
© 2009 Elsevier B.V. All rights reserved.
hase transitions
hermodynamic properties

. Introduction

With the wide-gap binary ANB8−N semiconductors and promis-
ng potential of alkaline earth chalcogenides (AECs) used for various
lectrical and optical devices, MgTe has recently led to extensive
tudies in both theoretical [1–7] and experimental [8,9]. Recently,
ots of properties of solids have become possible to compute with
reat accuracy from the first principles methods. These calculations
re therefore used to investigate the structures of materials at high
ressures. The significant advances in computational materials sci-
nce have made possible the use of ab initio quantum mechanical
echniques to predict MgTe the electronic structure [3,6], the phase
ransition [4,5] and optical properties [7]. Such studies could play a
ignificant role from the standpoint of predicting the performance
f the material under extreme conditions.

Despite much theoretical works, the MgTe is so far not well
nderstood for some of its properties, for example, the effect of
ressure on its thermodynamic properties. This has motivated

s to examine the structural and thermodynamic properties of
gTe, with emphasis on their dependence on hydrostatic pressure.

ill today, these properties remain as a source for investigation
nd for possible new discoveries. In the present paper, the rock

∗ Corresponding author. Tel.: +86 379 65515016; fax: +86 379 65515016.
E-mail address: fhzscdx@163.com (H. Fu).

925-8388/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2009.02.009
salt structure (B1) to cesium chloride structure (B2) transition
volumes and pressures were deduced, and the structural and ther-
modynamic properties of MgTe (the B1 and B2 phases) were
investigated.

2. Computational approach

Through the Cambridge Serial Total Energy Package (CASTEP)
program [10] and the quasi-harmonic Debye model [11], all
calculations are performed based on the plane-wave pseudopo-
tential density function theory (DFT) [12,13]. Vanderbilt-type
ultrasoft pseudopotentials (USPP) [14] are employed to describe
the electron–ion interactions. The effects of exchange correlation
interaction are treated with the generalized gradient approxima-
tion (GGA) of Perdew–Burke–Eruzerhof (PBE) [15]. In the structure
calculation, a plane-wave basis set with energy cut-off 360.00 eV
is used. Pseudo-atomic calculations are performed for Mg3s2 and
Te5s25p4. For the Brillouin-zone sampling, we adopt the 6 × 6 × 6
Monkhorst–Pack mesh [16], where the self-consistent convergence
of the total energy is at 10−7 eV/atom and the maximum force on
the atom is below 10−5 eV/Å.
3. Results and discussions

Within ab initio calculations, the structural properties are very
important first step to understand the material properties from a

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:fhzscdx@163.com
dx.doi.org/10.1016/j.jallcom.2009.02.009
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Table 1
The lattice constants (Å), bulk modulus (GPa) and its pressure derivation, elastic
constants Cij (GPa) of the B1 and B2 structures of MgTe at P = 0 and T = 0, together
with the transition pressures Pt (GPa).

This work Other theoretical calculations Experiments

B1 structure
a 5.947 5.86 [7], 5.84 [4], 5.9242 [5], 5.8548 [28]
B0 47.87 52 [7], 53.3 [4], 54.5 [5], 48.6 [28]
B′

0 3.78 4.1 [7], 4.04 [5], 3.88 [28]
C11 89.66 185.36 [19], 96.3 [22], 124.2 [23], 82.8 [7]
C12 32.66 29.88 [19], 17.6 [22], 65.9 [23], 25.7 [7]
C44 26.97 31.86 [19], 10.2 [22], 65.9 [23], 38.9 [7]
Pt 90.32 68.2 [19], 69.6 [20], 176 [22], >60 [24], 69.7

[25], 190.8 [26], 101.8 [27], 69.6 [5]
>60 [21]

B2 structure
a 3.6982 3.6238 [18], 3.6826 [5], 3.6544 [6], 3.6826 [5]
B0 45.68 52.348 [18], 49.5 [5], 53.22 [6], 49.5 [5]
B′

0 3.582 3.913 [18], 4.20 [5], 4.20 [5]

m
s
i
s
r
m
C

t
s
o
P
e
c
g
s
c

t
i
p
2
o
m
o

The Grüneisen parameter � is thought to be described the alter-
C11 82.2 53.54 [18]
C12 32.8 51.6 [18]
C44 7.5 1.6 [18]

icroscopic point of view. The calculated equilibrium lattice con-
tants a, elastic constants Cij, zero-pressure bulk modulus B0 and
ts pressure derivation B′

0 from the Birch–Murnaghan equation of
tate (EOS) [17] are listed in Table 1, together with other theoretical
esults [5–7,18–27,4] and the experimental data [28]. The agree-
ents among them are good. The calculations of elastic constants

ij are shown in Appendix A.
As known, there are two basic methods to obtain the zero-

emperature pressure of transition for MgTe. The first one is the
lope of the common tangent of both E–V curves in Fig. 1. The sec-
nd one is enthalpy, H = E + PV, i.e., at the phase transition pressure
, the enthalpies of B1 and B2 structures attaining the same. The
nthalpy H as a function of pressure P is illustrated in Fig. 2. The cal-
ulated transition pressure (B1 to B2) Pt = 90.32 GPa, is about 24.5%
reater than the one predicted by Narayana et al. [20], about 52.7%
maller than the one calculated by Cervantes et al. [25] and very
lose to that of Rabah et al. [26].

The EOS of MgTe in both B1 and B2 phases are obtained using
he quasi-harmonic Debye model [11]. We illustrate the normal-
zed primitive cell volume V/V0 (V0 is the zero-pressure equilibrium
rimitive cell volume) dependences on pressure P at T = 300 and

000 K in Fig. 3. Obviously, when temperature increases, the curve
f V/V0 − P becomes steeper, indicating that MgTe is compressed
uch more easily at higher temperature. At transition pressure Pt,

ur calculation shows that there is no noticeable volume change

Fig. 1. Energy as a function of primitive cell volume for MgTe.
Fig. 2. Enthalpy as a function of pressure for MgTe.

between B1 and B2 phases as given in Fig. 3. This likely indicates
that transition is second order. The volume (B1 to B2) reduces 6.11%
and 5.85% at T = 300 and 2000 K, respectively.

Elastic constants are believed to be related to the strength of
materials. To investigate the hardness of materials, the bulk and
shear moduli are frequently calculated. The elastic constants deter-
mine the response of the crystal to the external forces and play
an important part in determining the strength of the materials
[29]. Values of these elastic constants provide valuable informa-
tion about the bonding characteristic between the adjacent atomic
planes and the anisotropic character of the bonding and structural
stability. On compression, at T = 300 and 2000 K, the pressure-
dependence of bulk moduli ratios of MgTe in both B1 and B2
structures, (B − B0)/B0 (B0 is the zero-pressure bulk modulus), are
plotted in Fig. 4. We see that the bulk modulus, a property of a
material which defines its resistance to volume change when com-
pressed, increases as a function of the hydrostatic pressure in both
B1 and B2 phases. This behavior is common to all II–VI compounds.
It shows the fact that the effect of increasing pressure on MgTe is
the same as increasing its temperature.
ation in a crystal lattice’s vibration’s frequency based on the lattice’s
increase or decrease in volume as a result of temperature change.
It is directly related to the EOS. The calculations of Grüneisen
parameter � is shown in Appendix A. We have determined the

Fig. 3. The normalized volume–pressure diagram of the B1 and B2 structures for
MgTe at 200 and 2000 K temperatures.
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Fig. 6. Variation of thermodynamic parameters X (X: Debye temperature or heat
capacity) with pressure P. They are normalized by (X − X0)/X0, where X and X0 are
the Debye temperature or heat capacity at any pressure P and zero pressure at the
temperatures of 300 and 2000 K.
ig. 4. The bulk modulus ratios–pressure of the B1 and B2 structures for MgTe at
00 and 2000 K temperatures.

ressure-dependence of Grüneisen parameter � for both the phases
1 and B2, which are shown in Fig. 5. Below the phase transition
ressure Pt, the Grüneisen parameter ratios (B1 phase), (� − �0)/�0,

ncrease (not linear) with the pressure. However, above the phase
ransition pressure Pt, the Grüneisen parameter ratios (B2 phase),
� − �0)/�0, increase (nearly linear) with the pressure. When the
ressure is near Pt, the ratios of the B1 and B2 phases, (� − �0)/�0,

ump up by 7.68% and 7.07% at the temperature 300 and 2000 K,
espectively.

The variations of the Debye temperature � and the heat capac-
ty CV with pressure P for the B1 and the B2 structures of MgTe are
hown in Fig. 6. They are normalized by (X − X0)/X0, where X and
0 are the Debye temperature or heat capacity at any pressure P
nd zero pressure. The calculations of Debye temperature � and
he heat capacity CV are shown in Appendix A. It is shown that,
or the two phases of MgTe, when the temperature keeps constant,
he Debye temperature � increases almost linearly with applied
ressures. The Debye temperatures � of the B1 and the B2 struc-

ures at the temperature of 2000 K are higher than those at 300 K,
s shows the fact that the vibration frequency of the particles in
gTe changes with the pressures and the temperatures. On the

ther hand, the heat capacity CV decreases with the applied pres-
ures. In Fig. 7, the heat capacity of the B1 and B2 structures of MgTe

ig. 5. The Grüneisen parameter ratios–pressure of the B1 and B2 structures for
gTe at 300 and 2000 K temperatures.
Fig. 7. The heat capacity of the B1 and B2 structures of MgTe at various pressures
and temperatures.

are plotted for several pressures. It is shown that when T < 1400 K,
the heat capacity CV is dependent on both the temperature T and
the pressure P. This is due to the anharmonic approximations of the
Debye model. However, at higher pressures and/or higher temper-
atures, the anharmonic effect on CV is suppressed, and CV is very
close to the Dulong–Petit limit.

4. Conclusions

We have investigated the transition phase of MgTe from the B1
structure to the B2 structure by the ab initio plane-wave pseudopo-
tential density functional theory method using package CASTEP.
It is found that the transition phase from the B1 to B2 occurs
at 90.32 GPa according to the usual condition of equal enthalpy.

Through the quasi-harmonic Debye model, we have successfully
obtained the dependences of the relative volume V/V0 on the pres-
sure P, the Debye temperature � and heat capacity CV on the
pressure P, the Grüneisen parameter ratio (� − �0)/�0 on pressure
P, bulk moduli ratio (B − B0)/B0 on pressure P and the heat capacity
CV on the temperature T.
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ppendix A

.1. Calculations of MgTe elastic constants, bulk modulus, etc.

On the basis of the Hooke’s law, the elastic stiffness tensor Cijkl
an be expressed as [30,31]

ijkl =
(

∂�ij(x)
∂ekl

)
X (1)

here �ij and ekl are the applied stress and Eulerian strain tensors
nd X and x are the coordinates before and after the deformation.
nder the hydrostatic pressure P, the Cijkl can be given by [31,32]

ijkl =
(

1
V(x)

∂2E(x)
∂eij

∂ekl

)
X

+ P

2
(2ıijıkl − ıikıjl − ıilıjk) (2)

here ı is the finite strain variable.
For the case of isotropic stress, the three nonindependent elastic

onstants of cubic crystals (C11, C12, and C44) are calculated by the
econd derivatives of the total energy density with respect to the
nfinitesimal strain tensor ekl. The strain

=
(

ı 0 0
0 0 0
0 0 0

)
(3)

s adopted to each V for the calculation of C11. Then

11 = 1
V

∂2E

∂ı2 |ı=0
(4)

The ekl matrix for the calculation of C44 is

=
(

0 ı ı
ı 0 ı
ı ı 0

)
(5)

hen

44 = 1
12V

∂2E

∂ı2 |ı=0
(6)

12 is calculated from C11 and C11 − C12, The ekl matrix for the cal-
ulation of C11 − C12 is

=
(

ı 0 0
0 −ı 0
0 0 0

)
(7)

hen

11 − C12 = 1
2V

∂2E

∂ı2 |ı=0
(8)

The pressure P versus the normalized volume Vn is obtained
hrough the following thermodynamic relationship [33]:
= − dE

dV
= B0

B′
0

[V
−B′

0
n − 1] (9)

here B′
0 = dB0/dp and B0 are the pressure derivative of the bulk

odulus and zero-pressure bulk modulus, respectively.
pounds 480 (2009) 587–591

For the specific case of the cubic lattices, the shear modulus G,
the Young’s modulus E, Poisson’s ratio � and anisotropy factor (A)
[34], for an isotropic material are given by

G = 1
2

(GV + GR) (10)

E = 9BG

3B + G
(11)

� = 3B − 2G

2(3B + G)
= C12

C11 + C12
(12)

A = 2C44 + C12

C11
(13)

respectively.
Where GV = (2C′ + 3C44)/5, GR = 15(6/C′ + 9/C44)−1,

C′ = (C11 − C12)/2. GV and GR are the Voigt shear modulus and
the Reuss shear modulus, respectively.

A.2. Calculations of thermodynamic properties of MgTe

To investigate the thermodynamic properties of MgTe, we here
apply the quasi-harmonic Debye model [11], in which the non-
equilibrium Gibbs function G*(V; P, T) takes the form of

G∗(V ; P, T) = E(V) + PV + AVib(�(V); T) (14)

where E(V) is the total energy per unit cell for �-MgTe, �(V) is the
Debye temperature, and the vibrational Helmholtz free energy AVib
can be written as [35,36]

AVib(�; T) = nKT ×
[

9
8

�

T
+ 3 ln(1 − e−�/T ) − D

(
�

T

)]
(15)

where D(�/T) represents the Debye integral and n is the number of
atoms per formula unit. � is expressed by [36],

� = h̄

K
[6�2V1/2]

1/3
f (�)

√
BS

M
(16)

where M is the molecular mass per formula unit, BS is the adiabatic
bulk modulus approximated by the static compressibility [11]

BS ≈ B(V) = V

(
d2E(V)

dV2

)
(17)

and f(�) is given by Refs. [37,38].
Therefore, the nonequilibrium Gibbs function G*(V; P, T) as a

function of (V; P, T) can be minimized with respect to volume V as(
∂G∗(V ; P, T)

∂V

)
P,T

= 0. (18)

By solving Eq. (18), one can get the thermal EOS V(P, T). The
isothermal bulk modulus BT is given by [11]

BT (P, T) = V

(
∂2G∗(V ; P, T)

∂V2

)
P,T

(19)

The heat capacity CV and the thermal expansion (˛) are
expressed as

CV = 3nK

[
4D

(
�

T

)
− 3�/T

e�/T − 1

]
(20)

˛ = �CV (21)

BT V

where � is the Grüneisen parameter defined as

� = −d ln �(V)
d ln V

(22)
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